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Recently Alday and Maldacena proposed a novel method to calculate planar gluon

scattering amplitudes at strong coupling in N = 4 SYM by using AdS/CFT duality [1].

At leading order the calculation is reduced to finding the minimal area of a string with a

light-like boundary.

On the other hand, in N = 4 SYM, an ansatz for the all order form of the n gluon

MHV scattering amplitudes has already been given by Bern, Dixon and Smirnov [2]. This

ansatz (the BDS ansatz) was supposed to be valid at both weak and strong coupling. In

the weak coupling regime, it has been verified for the four-point amplitude up to five-loop

and five-point amplitude up to two-loop [3]–[7].

By using their proposal [1], Alday and Maldacena computed the explicit form of the

amplitude for the scattering of four gluons and found precise agreement with the BDS

ansatz to the leading order of strong coupling. Inspired by this new correspondence, there

have appeared a number of closely related works and generalizations in [8]–[30]. In partic-

ular, an important quantity in the BDS ansatz, the one-loop MHV n-gluon amplitude, can

be written as a double contour integral along a polygonal Wilson loop Π, which is defined

by the external gluons momenta [11](see also [10]):

M (1)
n =

∮

Π

∮

Π

dyµdy′µ
[(y − y′)2]1+ǫ

(1)

By the proposal of Alday and Maldacena [1], this geometrical integral should be identified

with another geometric quantity: the minimal area of a string in AdS5 which is bounded

by the same polygon (see [16] for more details).

To realize the proposal of Alday and Maldacena, it is essential to find the classical

string solution with given boundary conditions. In [1], the solution of four-gluon scattering

was found by doing conformal transformations to a cusp solution, or by trial and error.

For the general multi-gluon scattering, it’s more difficult to find solutions.1 Due to the

lack of a general method to solve the complicated equations, it is also not clear whether

the solution is unique or not.

In a recent paper [16], Mironov, Morozov and Tomaras solved the sigma-model equa-

tions of motion in the case of four-gluon scattering by using a special ansatz. Surprisingly,

the solution was found to have a moduli space {za, φ} [16], and moreover, the regular-

ized minimal area is also moduli dependent. This raises a problem: which solution in the

moduli space is the ‘right’ solution that corresponds to the unique scattering amplitude?

In [16], the authors suggested that the Alday-Maldacena solution could be considered as a

minimum of the regularized action in the moduli space.

In this paper, we point out that a unique solution can be obtained by imposing all

the Virasoro constraints.2 We will show this explicitly in the case of four-gluon scattering,

1There have been discussions on the solutions of the large n-point case in [22], and 6-point and 8-point

case in [24]. The interesting dressing method for finding new possible solutions was discussed in [15].
2The Virasoro constraints were also considered in [26] when the relation between the σ-model action and

Nambu-Goto action was discussed. For the Nambu-Goto action, due to the reparametrization invariance,

we can always choose a parametrization to give the same equations of motion plus the Virasoro constraints

as that from the string σ-model action.
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where the moduli space variables {za, φ} in [16] can be fixed uniquely by the Virasoro

constraints. This is supposed to be true in the cases of general multi-gluon scattering.

We first give a short review of the solution in [16]. We will follow closely the notations

used in [16].

The string σ-model action is

S[X, g] =

∫

d2u
√

g gij GMN∂iX
M∂jX

N , (2)

where the world-sheet metric gij(u1, u2) is taken to be Euclidean.

In conformal gauge and for the AdS5 target space, the string σ-model action takes the

following form

S =

∫

d2u
(~∂r)2 + (~∂y)2

r2
. (3)

The bold font is for 4d vectors in the target space, while arrow is used for 2d vectors on

the world-sheet.

The equations of motion are

~∂

(

~∂r

r2

)

= −L

r
, ~∂

(

~∂y

r2

)

= 0, (4)

L =
(~∂r)2 + (~∂y)2

r2
. (5)

The solution should also satisfy the Virasoro constraints, i.e. δgS[X, g] = 0, which in

conformal gauge read

(∂1r)
2 − (∂2r)

2 + (∂1y)2 − (∂2y)2 = 0, (6)

∂1r∂2r + ∂1y∂2y = 0. (7)

In coordinate z = 1/r,v = y/r, the equations of motion take the following form

∆z = zL, ∆v = vL, (8)

z2L − (~∂z)2 = (z~∂v − v~∂z)2, (9)

where ∆ ≡ ∂2/∂u2
1 + ∂2/∂u2

2 is the world-sheet Laplacian. And the Virasoro constraints

take the following form

(∂1z)2 − (∂2z)2 + (z∂1v − v∂1z)2 − (z∂2v − v∂2z)2 = 0, (10)

(∂1z)(∂2z) + (z∂1v − v∂1z)(z∂2v − v∂2z) = 0. (11)

For L = const, an ansatz of the solution is given in [16] as

z =

n
∑

a=1

zae
~ka·~u, v =

n
∑

a=1

vae
~ka·~u, (12)
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where n is the number of external gluons. And the boundary conditions are given as

∆ay =
va+1

za+1
− va

za
= pa, (13)

where pa are the n external momenta.

It is easy to see that the ansatz eq. (12) satisfies eq. (8) if ~k2
a = L. Nontrivial equations

are eqs. (9)–(11). By substitution of eq. (12), eq. (9) takes the following form

∑

a,b

zazb

(

L − (~ka · ~kb)
)

Ea+b −
∑

a<b, c<d

(PabPcd)(~kab · ~kcd)Ea+b+c+d = 0, (14)

and the Virasoro constraints eqs. (10)–(11) take the following form
∑

a,b

zazb(k
1
ak

1
b − k2

ak
2
b )Ea+b +

∑

a<b, c<d

(PabPcd)(k
1
abk

1
cd − k2

abk
2
cd)Ea+b+c+d = 0, (15)

∑

a,b

zazb(k
1
ak

2
b + k2

ak
1
b )Ea+b +

∑

a<b, c<d

(PabPcd)(k
1
abk

2
cd + k2

abk
1
cd)Ea+b+c+d = 0, (16)

where all the summations are from 1 to n, and

Ea1+...+am
= e(~ka1

+...+~kam
)·~u, ~kab = ~ka − ~kb, ~k = (k1, k2),

Pab = zavb − zbva = zazb(pa + pa+1 + . . . + pb−1). (17)

Now we try to solve these equations. We first consider eq. (14). This equation consists

of a summation of a series of independent E-functions (Ea+b+...). So solving this equation

is equivalent to requiring the vanishing of the coefficient of each independent E-function.

Let’s first study the terms of E2a+(a−1)+(a+1) . Eq. (14) requires that

0 =
(

P(a−1)aPa(a+1)

)

(

~k(a−1)a · ~ka(a+1)

)

E2a+(a−1)+(a+1)

= z2
aza−1za+1(2pa−1pa)

(

~k(a−1)a · ~ka(a+1)

)

E2a+(a−1)+(a+1) , for all a = 1, 2, . . . , n.(18)

where n + 1 = 1 by cyclicity. Since 2pa−1pa = (pa−1 + pa)
2 6= 0, the above equations are

equivalent to

~k(a−1)a · ~ka(a+1) = (~ka−1 − ~ka) · (~ka − ~ka+1) = 0, for all a = 1, 2, . . . , n. (19)

For ~k2
a = L = const, these conditions can be all satisfied only at n = 4, where the four

~k-vectors point along the diagonals of a rectangle. This indicates that the ansatz eq. (12)

can not be applied to n > 4 cases directly.3 We will only consider the 4-point case.

We can take the ~k-vectors generally as

~k1 =
√

L(cos φ1, sin φ1), ~k2 =
√

L(cos φ2,− sin φ2),

~k3 =
√

L(− cos φ1,− sin φ1) = −~k1, ~k4 =
√

L(− cos φ2, sin φ2) = −~k2. (20)

3We can also study the interesting 3-point case. The scattering amplitude of three on-shell gluons is

identically zero. In Alday and Maldacena’s proposal, this can be understood by noticing that three lightlike

lines can not constitute a triangle. But if one gluon is off-shell, it is possible to find a solution for eq. (14)

under the ansatz eq. (12). However, this solution has a non-analytic point, and even worse, it is incompatible

with one of the Virasoro constraints.
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The parameter L is inessential, due to the scaling reparametrization invariance of (u1, u2).

On the other hand, the parameters {φ1, φ2} are important, since different values of {φ1, φ2}
can correspond to physically inequivalent solutions.

After substitution of eq. (20) for ~k-vectors, eq. (14) can be collected as

0 = (1 − z1z3s − z2z4t)

[

sin2

(

φ1 + φ2

2

)

(z1z2E1+2 + z3z4E3+4)

+ cos2
(

φ1 + φ2

2

)

(z1z4E1+4 + z2z3E2+3) + (z1z3 + z2z4)E0

]

, (21)

where s = (p1 + p3)
2, t = (p2 + p3)

2 are the Mandelstam variables. The coefficients of

the remaining five independent E-functions have a common factor, so the equation can be

(and only be) solved by requiring this factor to vanish, i.e.

z1z3s + z2z4t = 1. (22)

From this relation, we see that there is still much freedom of choosing za, while {φ1, φ2}
are totally unfixed.

Next we consider the Virasoro constraints eq. (15) and eq. (16). Similar to solving

eq. (14), we substitute eq. (20) for ~k-vectors, and collect the terms for independent E-

functions. Then eq. (15) gives

{cos(2φ1)z1z3[1 − 2z1z3s − (s + t)z2z4] + cos(2φ2)z2z4[1 − 2z2z4t − (s + t)z1z3]}2E0

−[cos(2φ1)z1z3s+cos(2φ2)z2z4t+cos(φ1−φ2)(1−z1z3s−z2z4t)]2(z1z2E1+2+z3z4E3+4)

−[cos(2φ1)z1z3s+cos(2φ2)z2z4t−cos(φ1−φ2)(1−z1z3s−z2z4t)]2(z1z4E1+4+z2z3E2+3)

−{cos(2φ1) − [cos(2φ1) − cos(2φ2)]z2z4t}(z2
1E1+1 + z2

3E3+3)

−{cos(2φ2) + [cos(2φ1) − cos(2φ2)]z1z3s}(z2
2E2+2 + z2

4E4+4) = 0, (23)

and eq. (16) gives

{sin(2φ1)z1z3[1 − 2z1z3s − (s + t)z2z4] − sin(2φ2)z2z4[1 − 2z2z4t − (s + t)z1z3]}2E0

−[sin(2φ1)z1z3s−sin(2φ2)z2z4t+sin(φ1 − φ2)(1−z1z3s−z2z4t)]2(z1z2E1+2+z3z4E3+4)

−[sin(2φ1)z1z3s−sin(2φ2)z2z4t−sin(φ1 − φ2)(1 − z1z3s − z2z4t)]2(z1z4E1+4+z2z3E2+3)

−{sin(2φ1) − [sin(2φ1) + sin(2φ2)]z2z4t}(z2
1E1+1 + z2

3E3+3)

+{sin(2φ2) − [sin(2φ1) + sin(2φ2)]z1z3s}(z2
2E2+2 + z2

4E4+4) = 0. (24)

We first consider the terms of Ea+a in the above two equations. The vanishing of their

coefficients is equivalent to the following relations

z1z3s =
− cos(2φ2)

cos(2φ1) − cos(2φ2)
=

sin(2φ2)

sin(2φ1) + sin(2φ2)
,

z2z4t =
cos(2φ1)

cos(2φ1) − cos(2φ2)
=

sin(2φ1)

sin(2φ1) + sin(2φ2)
, (25)

from which we get a relation for {φ1, φ2},

0 = sin(2φ1) cos(2φ2) + cos(2φ1) sin(2φ2) = sin[2(φ1 + φ2)]. (26)

– 4 –



J
H
E
P
0
3
(
2
0
0
8
)
0
1
0

Physically we require that φ1 + φ2 6= 0, π, so the above equation is solved by

φ1 + φ2 =
π

2
. (27)

This also gives that sin(2φ1) = sin(2φ2) and cos(2φ1) = − cos(2φ2). Substituting this back

into eq. (25), we get another relation4

z1z3s = z2z4t =
1

2
, (28)

which also solves eq. (22) that we have got from solving the equations of motion.

By using eq. (27) and eq. (28), we find that all the coefficients of other E-functions in

eq. (23) and eq. (24) also vanish. Therefore, eq. (27) and eq. (28) are our final constraints

on the solution.

It may be a little surprising that all the three complicated equations eq. (21), eq. (23)

and eq. (24) lead to only two relations. Under the special ansatz eq. (12), we actually have

more equations (every independent E-function gives an equation) than the freedom of the

solution, i.e. the solution is overdetermined by the equations of motion and the Virasoro

constraints. Generally, there would be no solution under this ansatz, such as for n > 4 cases.

It seems that we still have freedom to choose the value of φ1 (or φ2) in eq. (27), and also

have freedom to choose the value of z1 (or z3) and z2 (or z4) in eq. (28). However, all these

solutions are equivalent to each other due to two kinds of reparametrization invariance of

(u1, u2). By rotational reparametrization invariance, it’s easy to see that only the sum

of φ1 and φ2 is physically important; while the translational reparametrization invariance

tells us that the freedom in za is trivial, which we will show explicitly below. Besides an

inessential shift, the vectors va can also be fixed by the boundary conditions eq. (13) with

given za. So the solution is actually unique.

Let’s give the explicit form of the solution for r. By using eq. (27) and eq. (28), we

can write z generally as

z = z1e
~k1·~u +

1

2sz1
e−

~k1·~u + z2e
~k2·~u +

1

2tz2
e−

~k2·~u. (29)

By choosing a constant world-sheet vector ~δ which satisfies

e
~k1·

~δ =
√

2s z1 , e
~k2·

~δ =
√

2t z2 , (30)

we can make a translational transformation: ~u′ = ~u + ~δ. Then eq. (29) reads

z =
1√
2s

(

e
~k1·

~u′

+ e−
~k1·

~u′

)

+
1√
2t

(

e
~k2·

~u′

+ e−
~k2·

~u′

)

. (31)

Furthermore, we can set φ1 = φ2 = π/4 by making a rotational transformation of (u1, u2),

and also we can set L = 2 by making a scaling transformation of (u1, u2). Then we have

k1 = (+1,+1) and k2 = (+1,−1). After these transformations, we can write z as

z =

(

1√
2s

+
1√
2t

)

2 cosh u′

1 cosh u′

2 +

(

1√
2s

− 1√
2t

)

2 sinhu′

1 sinhu′

2 . (32)

4In the ansatz eq. (12) of the solution, we don’t require s, t > 0, which corresponds to spacelike momen-

tum transfer. However, the constraint eq. (28) infers it has to be so. Otherwise, if z1z3 < 0 or z2z4 < 0,

there will be singular points on the boundary for the solutions, which is physically inconsistent.
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The unique solution for r is then

r =
1

z
=

a

cosh u′

1 cosh u′

2 + b sinhu′

1 sinhu′

2

, (33)

where

a =

√
st√

2s +
√

2t
, b =

√
t −√

s√
t +

√
s

. (34)

This is exactly the same solution as the one found by Alday and Maldacena in [1].

In [16], the authors found a moduli space {za, φ} for the solutions without considering

the Virasoro constraints. By imposing the Virasoro constraints, we find that there are

other independent relations and the solution can be fixed uniquely. This also indicates

that for a general two-dimensional σ-model, where there are no Virasoro constraints, it is

possible to have a larger space of solutions.
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